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Part1. Impedance Preserving Discretization



Model Problem

 3D wave equation in free space

 Fourier transform in t, y, z, with 

 Exact solution:

 .                                    is a plane/evanescent wave 
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Finite Element Solution on a Uniform Grid in x

 FE discretization of:

 Element contribution matrix with uniform element size of h:

 Assembly results in the difference equation:
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Changing Mesh Size: Reflections

 A simple analysis using two uniform meshes with 
different element sizes (h, H), but the same material

 What happens when a right propagating wave hits the interface?

 Exact solution – just passes through

 Finite element solution – reflections due to impedance mismatch

: discrete impedance of left domain
    

: discrete impedance of right domain
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Computing Discrete Impedance (Half-space Stiffness)

 Basic idea: discrete half-space + finite element = discrete half-space

 .   depends on element size, resulting impedance mismatch when 
the element size changes, resulting in reflections
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Optimal Integration for Minimizing Reflection Error

 Minimize the error in impedance by using generalized integration rules 

 Minimize the error term by choosing 

 The error in impedance is completely eliminated! No more reflections

 Formally valid for more general 2nd order equations (anisotropic, visco-
elasticity etc., electromagnetics etc. – G, 2006, CMAME)
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Part 2. Absorbing Boundary Conditions

Perfectly Matched Discrete Layers



Perfectly Matched Discrete Layers
…Impedance Preserving Discretization of PML

 Perfectly Matched Layers (PML) (Berenger, 1994; Chew et.al. 1995)

 Step 1: Bend the domain into complex space

 Step 2: discretize PMDL domain (in complex space)

 Impedance is no longer preserved; perfect matching is destroyed

 Requires a large number of carefully chosen PML layers

 Impedance preserving discretization comes to the rescue! 

 Impedance is preserved/matched, irrespective of element length, small, large, 
real, complex – Perfectly Matching Discrete Layers (PMDL) 

 Discretize with 3-5 complex-length linear finite elements

 No discretization error, but truncation causes
reflections. The reflection coefficient is derived as

PML Region (imaginary or complex x)Interior (real x)

Reduced reflection into the interior
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PMDL vs PML: Effectiveness of Midpoint Integration

PMDL with 3 layers PML with 3 layers
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 Impedance preservation property is valid for any equation that is linear 
and second order in space (G, CMAME, 2006)

 Elastic and other complicated wave equations (G, Lim & Zahid, 2007)

 Evanescent waves can be treated effectively

 Padded PMDL – contains large real lengths with midpoint integration 
(Zahid & G, CMAME, 2006)

PMDL with 5 layers PML with 5 layers

PMDL: Some More Old Results
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Salient Features of PMDL

 Exponential convergence

 Near optimal discretization

 Optimal: need staggered grids (with Druskin et al., 2003)

 Links PML to rational ABCs

 Lindman, Engquist-Majda, Higdon and variants (e.g. CRBC)

 We started this from E-M/Higdon ABCs (G, Tassoulas, 2000)

 Extensions to corners is straightforward

 Additional advantage: Provides solutions to some difficult cases

 Backpropagating waves: anisotropy

 PML for discrete/periodic media
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PML RegionInterior

PMDL for Backpropagating Waves
Opposing signs of phase and group velocities

 Backpropagating waves grow in the PML region

 PML cannot work! (Bécache, Fauqueux and Joly, 
2003)

PML result: radiation
in anisotropic media

Result from PMDL after the fix

Savadatti & G (2012), J Comp. Phys.

 A counter-intuitive idea: make the reflections in 
PML region decay faster than the growth of the 
incident wave

Reduced Reflection 
into the interior

 Works only with PMDL: 
needs impedance preserving discretization!
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Anisotropic elasticity – Tilted Elliptic Case

Stable parametersArbitrary parameters

15Savadatti & G (2012), J Comp. Phys.

Ideal Slowness



Anisotropic elasticity – Non-elliptic Case
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Two different 

coordinated materials

Traditional mesh

Savadatti & G (2012), J Comp. Phys.



PMDL for Periodic Media (after discretization)

 Periodic media has internal reflections and 
transmissions

 Constructive interference leads to long-range 
propagation

 PML’s complex stretching spoils this balance and 
internal reflections and transmissions get mixed up!

 Basic Ideas (Discrete/Periodic PMDL): 

 Periodic media = Discrete vector wave equation 
(vector size = ndof in a cell)

 Discrete vector equation = impedance preserving 
discretization of more complicated wave equation

 Apply PMDL on the complicated wave equation results 
in impedance matching for periodic media

 Open problem: stability for complex problems

PML for Lattice Waves:
7% reflections w/20 PML 

layers

Discrete PMDL: less than
1% error w/ 4 PMDL layers 

17G & Thirunavukkarasu, JCP (2009), Waves 2011



Part 3. Two-Sided DtN Map

Complex-length Finite Element Method



Facilitating the Approximation of 2-Sided DtN Map

 Consider the equation: 

 Exact 2-sided DtN map:

 By definition, exact DtN Map is impedance preserving:  

 Consider impedance preserving discretization of the interval:

 Error in A and B would be similar since:  

 Approximating two-sided map reduces to approximating one-sided map

 Better derivation based on Crank-Nicolson discretization of the propagator
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1D Helmholtz Equation
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Propagator Approximation
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Downward AND upward waves!
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Padé Approximant
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Complex-Length FEM: Exponential Convergence

Laplace Equation                               Helmholtz Equation
(can’t beat Nyquist limit)
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Complex-Length FEM: Some Observations

 Exponentially convergent

 Piecewise linear interpolation 
– sparse computation

 Edges do not move (∑Lj=L) 
– can be combined with other types of 
meshes for other subdomains

 Mesh is not bent outside (Re(Lj)>0)

 Order of elements do not matter! 
– more on this later.

 With refinement, and proper ordering, 
mesh converges to a smooth curve on 
the complex plane
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Energy Conservation and Eigenvalue Problems

 Do complex lengths lead to energy 
absorption, like PML?

 No, due to conjugate pair of 
lengths – decay grows back!

 2-sided DtN Map is Hermitian
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 Do complex lengths lead to 
complex eigenvalues of K 
with respect to M?

 No. Eigenvalues are real 
and positive!

 Eigenvectors are complex 
(K and M are complex 
symmetric)
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Part 4. Near Surface Geophysical Site Characterization…
…using Guided Wave Inversion



Guided Wave Dispersion

Low
Frequency

High 
Frequency

Dispersion Curve
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Spectral Analysis

FFT

Experimental 
Dispersion Curve

Phase Velocity (m/s) =
Frequency (1/s)

Wavenumber (1/m)
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Medium Characterization

Experimental 
Dispersion Curve

Inverse Identification

 
2

experimantal predicted

1

N

i i

i

E c c


 
Iteratively 
Minimize

 Optimization Scheme

 Gradient Based, e.g. Newton-like Methods

 Global Search, e.g. Genetic Algorithm

Forward Problem:
Predicted Dispersion Curve

Initial 
Guess
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Forward Modeling – State of the Art
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Reducing the Problem Size: CFEM+PMDL
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Complex-Length FEM 

(Finite Layers)

Perfectly Matched discrete Layers 

(Halfspace)



Forward Modeling: CFEM vs. FEM
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Error in dispersion curve
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Inversion: Experimental  Dispersion Curve

Experimental 
Dispersion Curve

Inverse 
Identification

240 Geophones 36 Geophones 12 Geophones

Experimental 
Dispersion 

Curve

1st (fundamental) Mode

2nd

Mode

3rd

Mode

4th

Mode

5th Mode
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Challenge

 No analytical derivative

 Rough misfit function 
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 Existing approach:  Finite Difference Method (FDM)

 Expensive: Multiple computations of dispersion curve

 Slow convergence: Oscillatory gradient
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 Analytical Derivative

Proposed Derivative for Experimental Curve
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 Analytical vs. FDM Gradient

Proposed Derivative
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 FDM Gradient

Inversion Results: Synthetic Examples
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 Analytical Gradient



Iterations

(Existing)

Iterations

(Proposed)

CPU Time

(Proposed)

CPU Time

(Existing)

14 8 11.3 s 2884.6 s

Inversion Results: 14-Layer Soil Profile†
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Analytical 
Gradient

FDM
Gradient

† Experimental data from: J Xia et al., J. Environ. Eng. Geophys., 5.3, 1-13 (2000)



Conclusions

 Discretization that perfectly preserves the impedance is possible

 Linear FEM with midpoint integration preserves impedance

 Related to Crank-Nicolson discretization of the propagator

 Preserves the evanescence in PML region

 Absorbing Boundary Conds.: Perfectly Matched Discrete Layers (PMDL)

 Exponential convergence

 Link to other ABCs – we can get the best of both worlds

 Facilitates stable ABCs for some backward propagating waves

 Formally extensible to discrete periodic media

 Open questions: Parameters of discretization for stability and accuracy
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Conclusions (Contd.)

 Two-sided DtN Map

 Exponential convergence on the edges is possible with linear 
interpolation: Complex-length Finite Element Method (CFEM)

 Impedance preserving discretization is the key!

 Currently based on Padé approximant; could be further optimized

 Open questions: further theoretical understanding; extensions to 
variable coefficients and higher dimensions?

 Guided Wave Inversion

 Forward modeling: a good application of CFEM

 Approximate differentiation of the effective dispersion curve facilitates 
faster convergence and efficient gradient computation

 Future work: Bayesian and hybrid inversion
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